December 29, 2011

Bioinformatika (1)

Secara umum, Bioinformatika dapat digambarkan sebagai segala bentuk penggunaan komputer dalam menangani informasi-informasi biologi. Dalam prakteknya, definisi yang digunakan oleh kebanyakan orang bersifat lebih terperinci. Bioinformatika menurut kebanyakan orang adalah satu sinonim dari komputasi biologi molekul (penggunaan komputer dalam menandai karakterisasi dari komponen-komponen molekul dari makhluk hidup).

Pengertian Bioinformatika "klasik"

Sebagian besar ahli Biologi mengistilahkan ‘mereka sedang melakukan Bioinformatika’ ketika mereka sedang menggunakan komputer untuk menyimpan, melihat atau mengambil data, menganalisa atau memprediksi komposisi atau struktur dari biomolekul. Ketika kemampuan komputer menjadi semakin tinggi maka proses yang dilakukan dalam Bioinformatika dapat ditambah dengan melakukan simulasi. Yang termasuk biomolekul diantaranya adalah materi genetik dari manusia --asam nukleat-- dan produk dari gen manusia, yaitu protein. Hal-hal diataslah yang merupakan bahasan utama dari Bioinformatika "klasik", terutama berurusan dengan analisis sekuen (sequence analysis).

Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur [TEKAIA2004] adalah: "metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya." 
Dari sudut pandang Matematika, sebagian besar molekul biologi mempunyai sifat yang menarik, yaitu molekul-molekul tersebut adalah polymer; rantai-rantai yang tersusun rapi dari modul-modul molekul yang lebih sederhana, yang disebut monomer. Monomer dapat dianalogikan sebagai bagian dari bangunan, dimana meskipun bagian- bagian tersebut berbeda warna dan bentuk, namun semua memiliki ketebalan yang sama dan cara yang sama untuk dihubungkan antara yang satu dengan yang lain. Monomer yang dapat dikombinasi dalam satu rantai ada dalam satu kelas umum yang sama, namun tiap jenis monomer dalam kelas tersebut mempunyai karakteristik masing-masing yang terdefinisi dengan baik.

Beberapa molekul-molekul monomer dapat digabungkan bersama membentuk sebuah entitas yang berukuran lebih besar, yang disebut macromolecule. Macromolecule dapat mempunyai informasi isi tertentu yang menarik dan sifat-sifat kimia tertentu. Berdasarkan skema di atas, monomer-monomer tertentu dalam macromolecule dari DNA dapat diperlakukan secara komputasi sebagai huruf-huruf dari alfabet, yang diletakkan dalam sebuah aturan yang telah diprogram sebelumnya untuk membawa pesan atau melakukan kerja di dalam sel.

Proses yang diterangkan di atas terjadi pada tingkat molekul di dalam sel. Salah satu cara untuk mempelajari proses tersebut selain dengan mengamati dalam laboratorium biologi yang sangat khusus adalah dengan menggunakan Bioinformatika sesuai dengan definisi "klasik" yang telah disebutkan di atas.

Pengertian Bioinformatika "baru"
 
Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya proyek pemetaan genom manusia (Human Genome Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan --terutama oleh ahli biologi-- bahwa kita saat ini berada di masa pascagenom.
 
Selesainya proyek pemetaan genom manusia ini membawa beberapa perubahan bagi Bioinformatika, diantaranya:
Setelah memiliki beberapa genom yang utuh maka kita dapat mencari perbedaan dan persamaan di antara gen-gen dari spesies yang berbeda. Dari studi perbandingan antara gen-gen tersebut dapat ditarik kesimpulan tertentu mengenai spesies-spesies dan secara umum mengenai evolusi. Jenis cabang ilmu ini sering disebut sebagai perbandingan genom (comparative genomics).
 
Sekarang ada teknologi yang didisain untuk mengukur jumlah relatif dari kopi/cetakan sebuah pesan genetik (level dari ekspresi genetik) pada beberapa tingkatan yang berbeda pada perkembangan atau penyakit atau pada jaringan yang berbeda. Teknologi tersebut, contohnya seperti DNA microarrays akan semakin penting. Akibat yang lain, secara langsung, adalah cara dalam skala besar untuk mengidentifikasi fungsi-fungsi dan keterkaitan dari gen (contohnya metode yeast two- hybrid) akan semakin tumbuh secara signifikan dan bersamanya akan mengikuti Bioinformatika yang berkaitan langsung dengan kerja fungsi genom (functionalgenomics).
 
Akan ada perubahan besar dalam penekanan dari gen itu sendiri ke hasil-hasil dari gen. Yang pada akhirnya akan menuntun ke: usaha untuk mengkatalogkan semua aktivitas dan karakteristik interaksi antara semua hasil-hasil dari gen (pada manusia) yang disebut proteomics; usaha untuk mengkristalisasi dan memprediksikan struktur-struktur dari semua protein (pada manusia) yang disebut structural genomics.

Apa yang disebut orang sebagai research informatics atau medical informatics, manajemen dari semua data eksperimen biomedik yang berkaitan dengan molekul atau pasien tertentu --mulai dari spektroskop massal, hingga ke efek samping klinis-- akan berubah dari semula hanya merupakan kepentingan bagi mereka yang bekerja di perusahaan obat-obatan dan bagian TI Rumah Sakit akan menjadi jalur utama dari biologi molekul dan biologi sel, dan berubah jalur dari komersial dan klinikal ke arah akademis.

Dari uraian di atas terlihat bahwa Bioinformatika sangat mempengaruhi kehidupan manusia, terutama untuk mencapai kehidupan yang lebih baik. Penggunaan komputer yang notabene merupakan salah satu keahlian utama dari orang yang bergerak dalam TI merupakan salah satu unsur utama dalam Bioinformatika, baik dalam Bioinformatika "klasik" maupun Bioinformatika "baru".

Penggunaan Bioinformatika dalam Bidang Klinis
 
Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis (clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yang disimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.

Penggunaan Bioinformatika untuk Identifikasi Agent Penyakit Baru
 
Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi agent penyakit yang belum dikenal penyebabnya. Banyak sekali penyakit baru yang muncul dalam dekade ini, dan diantaranya yang masih hangat adalah SARS (Severe Acute Respiratory Syndrome).

Pada awalnya, penyakit ini diperkirakan disebabkan oleh virus influenza karena gejalanya mirip dengan gejala pengidap influenza. Akan tetapi ternyata dugaan ini salah karena virus influenza tidak terisolasi dari pasien. Perkirakan lain penyakit ini disebabkan oleh bakteri Candida karena bakteri ini terisolasi dari beberapa pasien. Tapi perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus Corona jika dilihat dari morfologinya. Sekuen genom virus ini kemudian dibaca dan dari hasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus Corona yang telah berubah (mutasi) dari virus Corona yang ada selama ini.
 
Dalam rentetan proses ini, Bioinformatika memegang peranan penting. Pertama pada proses pembacaan genom virus Corona. Karena di database seperti GenBank, EMBL (European Molecular Biology Laboratory), dan DDBJ (DNA Data Bank of Japan) sudah tersedia data sekuen beberapa virus Corona, yang bisa digunakan untuk mendisain primer yang digunakan untuk amplifikasi DNA virus SARS ini. Software untuk mendisain primer juga tersedia, baik yang gratis maupun yang komersial. Contoh yang gratis adalah Webprimer yang disediakan oleh Stanford Genomic Resources (http://genome-www2.stanford.edu/cgi-bin/SGD/web-primer), yang GeneWalker disediakan oleh Cybergene AB (http://www.cybergene.se/primerdisain/genewalker), dan lain sebagainya. Untuk yang komersial ada Primer Disainer yang dikembangkan oleh Scientific & Education Software, dan software-software untuk analisa DNA lainnya seperti Sequencher (GeneCodes Corp.), SeqMan II (DNA STAR Inc.), Genetyx (GENETYX Corp.), DNASIS (HITACHI Software), dan lain lain.

Kedua pada proses mencari kemiripan sekuen (homology alignment) virus yang didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genom virus Corona penyebab SARS berbeda dengan virus Corona lainnya. Perbedaan ini diketahui dengan menggunakan homology alignment dari sekuen virus SARS. Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus berbeda dengan virus lainnya.

Penggunaan Bioinformatika untuk Diagnosa Penyakit Baru
 
Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk pemberian obat dan perawatan yang tepat bagi pasien.

Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR).

Teknik yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini sederhana, praktis dan cepat. Yang penting dalam teknik PCR adalah disain primer untuk amplifikasi DNA, yang memerlukan data sekuen dari genom agent yang bersangkutan dan software seperti yang telah diuraikan di atas. Disinilah Bioinformatika memainkan peranannya. Untuk agent yang mempunyai genom RNA, harus dilakukan reverse transcription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim reverse transcriptase. Setelah DNA diperoleh baru dilakukan PCR. Reverse transcription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR.

Teknik PCR ini bersifat kualitatif, oleh sebab itu sejak beberapa tahun yang lalu
dikembangkan teknik lain, yaitu Real Time PCR yang bersifat kuantitatif. Dari hasil Real
Time PCR ini bisa ditentukan kuantitas suatu agent di dalam tubuh seseorang, sehingga
bisa dievaluasi tingkat emergensinya. Pada Real Time PCR ini selain primer diperlukan
probe yang harus didisain sesuai dengan sekuen agent yang bersangkutan. Di sini juga
diperlukan software atau program Bioinformatika.

Penggunaan Bioinformatika untuk Penemuan Obat
 
Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa yang dapat menekan perkembangbiakan suatu agent penyebab penyakit. Karena perkembangbiakan agent tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu agent Mula-mula yang harus dilakukan adalah analisa struktur dan fungsi enzim-enzim tersebut. Kemudian mencari atau mensintesa zat/senyawa yang dapat menekan fungsi dari enzim-enzim tersebut.

Analisa struktur dan fungsi enzim ini dilakukan dengan cara mengganti asam amino tertentu dan menguji efeknya. Analisa penggantian asam amino ini dahulu dilakukan secara random sehingga memerlukan waktu yang lama. Setelah Bioinformatika berkembang, data-data protein yang sudah dianalisa bebas diakses oleh siapapun, baik data sekuen asam amino-nya     seperti yang ada di SWISS-PROT (http://www.ebi.ac.uk/swissprot/) maupun struktur 3D-nya yang tersedia di Protein Data Bank (PDB) (http://www.rcsb.org/pdb/). Dengan database yang tersedia ini, enzim yang baru ditemukan dapat dibandingkan sekuen asam amino-nya, sehingga bisa diperkirakan asam amino yang berperan untuk aktivitas (active site) dan kestabilan enzim tersebut.

Setelah asam amino yang berperan sebagai active site dan kestabilan enzim tersebut ditemukan, kemudian dicari atau disintesa senyawa yang dapat berinteraksi dengan asam amino tersebut. Dengan data yang ada di PDB, maka dapat dilihat struktur 3D suatu enzim termasuk active site-nya, sehingga bisa diperkirakan bentuk senyawa yang akan berinteraksi dengan active site tersebut. Dengan demikian, kita cukup mensintesa senyawa yang diperkirakan akan berinteraksi, sehingga obat terhadap suatu penyakit akan jauh lebih cepat ditemukan. Cara ini dinamakan “docking” dan telah banyak digunakan oleh perusahaan farmasi untuk penemuan obat baru.

Meskipun dengan Bioinformatika ini dapat diperkirakan senyawa yang berinteraksi dan menekan fungsi suatu enzim, namun hasilnya harus dikonfirmasi dahulu melalui eksperimen di laboratorium. Akan tetapi dengan Bioinformatika, semua proses ini bisa dilakukan lebih cepat sehingga lebih efisien baik dari segi waktu maupun finansial.

Tahun 1997, Ian Wilmut dari Roslin Institute dan PPL Therapeutics Ltd, Edinburgh, Skotlandia, berhasil mengklon gen manusia yang menghasilkan faktor IX (faktor pembekuan darah), dan memasukkan ke kromosom biri-biri. Diharapkan biri-biri yang selnya mengandung gen manusia faktor IX akan menghasilkan susu yang mengandung faktor pembekuan darah. Jika berhasil diproduksi dalam jumlah banyak maka faktor IX yang diisolasi dari susu harganya bisa lebih murah untuk membantu para penderita hemofilia.

Program-program Bioinformatika
 
Sehari-harinya bionformatika dikerjakan dengan menggunakan program pencari sekuen (sequence search) seperti BLAST, program analisa sekuen (sequence analysis) seperti EMBOSS dan paket Staden, program prediksi struktur seperti THREADER atau PHD atau program imaging/modelling seperti RasMol dan WHATIF. Contoh-contoh di atas memperlihatkan bahwa telah banyak program pendukung yang mudah di akses dan dipelajari untuk menggunakan Bioinformatika

Kondisi Bioinformatika di Indonesia
 
Di Indonesia, Bioinformatika masih belum dikenal oleh masyarakat luas. Hal ini dapat dimaklumi karena penggunaan komputer sebagai alat bantu belum merupakan budaya. Bahkan di kalangan peneliti sendiri, barangkali hanya para peneliti biologi molekul yang sedikit banyak mengikuti perkembangannya karena keharusan menggunakan perangkat-perangkat Bioinformatika untuk analisa data. Sementara di kalangan TI masih kurang mendapat perhatian.

Ketersediaan database dasar (DNA, protein) yang bersifat terbuka/gratis merupakan peluang besar untuk menggali informasi berharga daripadanya. Database genom manusia sudah disepakati akan bersifat terbuka untuk seluruh kalangan, sehingga dapat digali/diketahui kandidat-kandidat gen yang memiliki potensi kedokteran/farmasi. Dari sinilah Indonesia dapat ikut berperan mengembangkan Bioinformatika. Kerjasama antara peneliti bioteknologi yang memahami makna biologis data tersebut dengan praktisi TI seperti programmer, dan sebagainya akan sangat berperan dalam kemajuan Bioinformatika Indonesia nantinya.

Penerapan Bioinformatika di Indonesia
 
Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalam mengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah.

Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain: Deteksi Kelainan Janin, Pengembangan Vaksin Hepatitis B Rekombinan, dan Meringankan Kelumpuhan dengan Rekayasa RNA.

Sumber :